Thermodynamic limits of atmospheric water harvesting with temperature-dependent adsorption

Author:

Li Adela Chenyang1ORCID,Zhang Lenan1ORCID,Zhong Yang1ORCID,Li Xiangyu1ORCID,El Fil Bachir1ORCID,Fulvio Pasquale F.2ORCID,Walton Krista S.2ORCID,Wang Evelyn N.1ORCID

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2. School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Abstract

Adsorption-based atmospheric water harvesting (AWH) has vast potential for addressing global water shortage. Despite innovations in adsorbent materials, fundamental understanding of the physical processes involved in the AWH cycle and how material properties impact the theoretical limits of AWH is lacking. Here, we develop a generalized thermodynamic framework to elucidate the interplay between adsorbent properties and operating conditions for optimal AWH performance. Our analysis considers the temperature dependence of adsorption, which is critical but has largely been overlooked in past work. Using metal-organic framework (MOF) as an example, we show that the peak energy efficiencies of single-stage and dual-stage AWH devices, after considering temperature-dependent adsorption, increased by 30% and 100%, respectively, compared with previous studies. Moreover, in contrast to common understanding, we show that the adsorption enthalpy of MOFs can also be optimized to further improve the peak energy efficiency by 40%. This work bridges an important knowledge gap between adsorbent materials development and device design, providing insight toward high-performance adsorption-based AWH technologies.

Funder

Defense Advanced Research Projects Agency

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3