Model-less prediction filter for adaptive adjustment process noise

Author:

Min Wuzhi1ORCID,Zhao Hui2ORCID,Li Yingzhi1ORCID,Qin Liang3ORCID,Cheng Lan1ORCID

Affiliation:

1. Information Science and Technology Department, Wenhua College 1 , Wuhan 430074, China

2. Shenzhen Plexus Technology Co. 2 , Hangzhou 310000, China

3. Electrical Engineering and Automation Department, Wuhan University 3 , Wuhan 430073, China

Abstract

In this study, a filtering scheme suitable for high-precision sensors was proposed to extract high-precision sensor information. According to the principle of Kalman gain based on data fusion, a model-less prediction filter with minimum gain measurement noise compensation and process noise posteriori constraint adjustment was developed. In comparison to various Kalman filter methods, the proposed algorithm demonstrated better accuracy in the steady state. The high precision performance and effectiveness of the model-less prediction filter were verified under a digitally controlled linear power supply.

Funder

Excellent Young and Middle-Aged Scientific and Technological Innovation Team in Hubei College and University

Guidance Project of Science and Technology Research Program of Hubei Provincial Department of Education

Publisher

AIP Publishing

Subject

Instrumentation

Reference22 articles.

1. A new approach to linear filtering and prediction problems;J. Basic Eng.,1960

2. A receding horizon Kalman FIR filter for linear continuous-time systems;IEEE Trans. Autom. Control,1999

3. Convex structure-based nonlinear state estimation using linear Kalman filter and developing an MPC scheme,2018

4. A recursive frequency estimator using linear prediction and a Kalman-filter-based iterative algorithm;IEEE Trans. Circuits Syst.,2008

5. Kalman filter for linear systems with unknown structural parameters;IEEE Trans. Circuits Syst.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3