Affiliation:
1. Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
Abstract
Gaussian wavepacket dynamics has proven to be a useful semiclassical approximation for quantum simulations of high-dimensional systems with low anharmonicity. Compared to Heller’s original local harmonic method, the variational Gaussian wavepacket dynamics is more accurate, but much more difficult to apply in practice because it requires evaluating the expectation values of the potential energy, gradient, and Hessian. If the variational approach is applied to the local cubic approximation of the potential, these expectation values can be evaluated analytically, but they still require the costly third derivative of the potential. To reduce the cost of the resulting local cubic variational Gaussian wavepacket dynamics, we describe efficient high-order geometric integrators, which are symplectic, time-reversible, and norm-conserving. For small time steps, they also conserve the effective energy. We demonstrate the efficiency and geometric properties of these integrators numerically on a multidimensional, nonseparable coupled Morse potential.
Funder
Horizon 2020 Framework Programme
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献