Multi-timescale scheduling strategy for multi-microgrids with accelerated alternating direction method of multipliers and stochastic model predictive control

Author:

Li Zhen-Long1,Li Peng1ORCID,Yuan Zhi-Peng1,Xia Jing23

Affiliation:

1. School of Electronic and Information Engineering, Beijing Jiaotong University 1 , Beijing 100044, China

2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University 2 , Beijing 102206, China

3. Xinjiang Goldwind Science & Technology Co., Ltd 3 ., Xinjiang 830026, China

Abstract

The superiorities of renewable energy, such as wind and solar energy, have promoted the development of microgrids (MGs) and multi-microgrids (MMGs). However, how to coordinate the scheduling and transactions of MMGs with multi-timescale is still an important issue. This paper presents a scheduling and trading strategy of MMGs with two time-scales: day-ahead and intra-day. In the day-ahead scheduling stage, a MMG system with peer-to-peer connection is considered. Based on the idea of distributed updating parameters and adaptive selecting values in Alternating Direction Method of Multipliers (ADMM), an accelerated ADMM algorithm named improved adaptive accelerated ADMM (IAA-ADMM) is proposed, which is modeled and solved in a distributed manner. In the intra-day scheduling stage, based on the day-ahead scheduling, this paper utilizes stochastic model predictive control (SMPC) to optimize the intra-day model, which helps address the uncertainties of wind, solar, and load forecasting. The effectiveness of the proposed approach is validated using numerical examples. The results show that the IAA-ADMM provides higher stability and faster convergence and facilitates easier implementation. The SMPC shows higher economic performance and has a higher application potential.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Tianshan Talent Program of Xinjiang Uygur Autonomous Region

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3