Solid-state reactions at niobium–germanium interfaces in hybrid quantum electronics

Author:

Langa B.1,Sapkota D.12,Lainez I.1ORCID,Haight R.3,Srijanto B.4,Feldman L.5ORCID,Hijazi H.5,Zhu X.6,Hu L.6ORCID,Kim M.6,Sardashti K.17ORCID

Affiliation:

1. Department of Physics and Astronomy, Clemson University 1 , Clemson, South Carolina 29634, USA

2. NASA Goddard Space Flight Center 2 , Greenbelt, Maryland 20771, USA

3. IBM T.J. Watson Research Center 3 , Yorktown Heights, New York 10598, USA

4. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory 4 , Oak Ridge, Tennessee 37830, USA

5. Department of Physics and Astronomy, Rutgers University 5 , Newark, New Jersey 08901, USA

6. Department of Materials Science and Engineering, University of Texas in Dallas 6 , Richardson, Texas 75080, USA

7. Department of Physics, University of Maryland 7 , College Park, Maryland 20740, USA

Abstract

Hybrid superconductor–semiconductor materials systems are promising candidates for quantum computing applications. Their integration into superconducting electronics has enabled on-demand voltage tunability at millikelvin temperatures. Ge quantum wells have been among the semiconducting platforms interfaced with superconducting Al to realize voltage tunable Josephson junctions. Here, we explore Nb as a superconducting material in direct contact with Ge channels by focusing on the solid-state reactions at the Nb/Ge interfaces. We employ Nb evaporation at cryogenic temperatures (∼100 K) to establish a baseline structure with atomically and chemically abrupt Nb/Ge interfaces. By conducting systematic photoelectron spectroscopy and transport measurements on Nb/Ge samples across varying annealing temperatures, we elucidated the influence of Ge out-diffusion on the ultimate performance of superconducting electronics. This study underlines the need for low-temperature growth to minimize chemical intermixing and band bending at the Nb/Ge interfaces.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3