Measurement of current distribution using infrared thermography

Author:

Ren Chao1ORCID,Bai Libing1ORCID,Shi Ruilong2,Zhang Jie1,Zhang Xu1,Chen Cong1ORCID

Affiliation:

1. School of Automation Engineering, University of Electronic Science and Technology of China 1 , Chengdu 611731, China

2. Equipment Supplies Center of China Petroleum Pipeline Inspection Technologies Company 2 , Hebei 065000, China

Abstract

Current distribution measurement methods are widely used in medical examinations, predicting faults in semiconductor devices and assessing structural integrity. Several methods for measuring current distribution are available, such as electrode arrays, coils, and magnetic sensors. However, these measurement methods are unable to obtain images of current distribution with high spatial resolution. Therefore, there is a need to develop a non-contact method to measure current distribution that is capable of capturing images with high spatial resolution. In this study, a non-contact current distribution measurement method based on infrared thermography is proposed. The method uses thermal variations to quantify the current amplitude and reconstructs the current direction based on the passivity of the electric field. For quantification of low frequency current amplitude, the experimental results show that the method can provide accurate current measurement results, for example, at the power frequency (50 Hz), in the range of 1.05–3.45 A, its relative error can be improved to ±3.66% when the calibration fitting method is used. For the high-frequency current, an effective estimate of the current amplitude is obtained using the first-order derivative of temperature variation. When applied to the eddy current detection (256 KHz), it achieves a high-resolution image of the current distribution, and the effectiveness of the method is verified through simulation experiments. The experimental results show that the proposed method not only measures the current amplitude accurately but also improves the spatial resolution in acquiring two-dimensional current distribution images.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Sichuan Province

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3