A resonant inertial impact rotary piezoelectric motor based on a self-clamping structure

Author:

He Liangguo1ORCID,Wan Zhikai1,Li Kun1ORCID,Wang Yong1,Li Xinyu1ORCID,Ge Xinfang1,Dou Haotian1,Shan Zengxiang1,Yue Xukang1ORCID,Qian An1ORCID

Affiliation:

1. School of Mechanical Engineering, Hefei University of Technology , Hefei, Anhui 230009, China

Abstract

A resonant inertial impact rotary piezoelectric motor based on a self-clamping structure is designed, assembled, and tested. The designed piezoelectric motor mainly includes a rotor (two vibrators, preload mechanism, and intermediate connection mechanism), a clamping mechanism, and another auxiliary mechanism. The piezoelectric ceramic sheet on the rotor drives the vibrator to swing under the excitation of a single harmonic wave. Because there is a clamping mechanism formed by the combination of clamp baffle and fixed clamp ring, thus the half-cycle resonant rotation of the rotor can be effectively completed, and repeated harmonic excitation can realize the unidirectional continuous rotation and swing of the rotor. The whole excitation process of the motor is in a resonance state, which has significant advantages, such as low friction and simple structure, compared with the traditional quasi-static piezoelectric motor. The structure of the piezoelectric motor is designed and analyzed using COMSOL5.5 software and then the motor performance is tested and analyzed by building an experimental platform to verify the feasibility of the motor design. The final experimental results show that the optimal working frequency of the piezoelectric motor is 150 Hz, which is consistent with the characteristic frequency of the simulation. When the motor prototype is under the conditions of optimal operating frequency 150 Hz, voltage 240 Vp-p, and preload torque 7.8 N.mm, the maximum angular speed can reach 2.4 rad/s, the maximum load can reach 27.8 N mm and the maximum resolution of the movement angle can reach 0.941°.

Funder

The Project of the Natural Science Foundation of Anhui Province of China

The National Natural Science Fund of China

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3