An in-depth investigation of the microstructural evolution and dynamic properties of Zr77Rh23 metallic liquids and glasses: A molecular dynamics simulation study

Author:

Celtek Murat1ORCID

Affiliation:

1. Faculty of Education, Trakya University, Edirne 22030, Turkey

Abstract

The microstructural evolutions and dynamic properties of the Zr77Rh23 alloy during the rapid cooling process have been studied by molecular dynamics (MD) simulations using tight-binding (TB) potential. The total pair distribution functions [or structure factors, S( q)], g( r), calculated at different temperatures are in good agreement with the ab initio MD (AIMD) simulation (or experimental) results. The splitting in the second peak of all g( r) is notable for the formation and development of a medium-range order (MRO) in the Zr77Rh23 system. Moreover, the total number of atoms determined from TB-MD simulations at 300 K is also consistent with the number of atoms of the three shells for the Bergman-type MRO cluster and AIMD simulation results. By analyzing the structure of the system with methods such as the Honeycutt–Andersen index, Voronoi tessellation, and bond-angle distribution, it has been shown that the icosahedron short-range order (SRO) increases upon cooling. The dominant short-range structure in Zr77Rh23 metallic glass is found to consist mostly of perfect and distorted icosahedral clusters. The findings show that, for all temperatures, Zr atoms have greater mobility than Rh atoms. The critical temperature Tc estimated from fitting the mode-coupling theory equation is ∼993 K. A dynamic crossover is observed at temperatures around Tc. The present findings contribute to understanding the nature of the atomic local structures of the Zr77Rh23 alloy during the cooling process and the formation of SRO/MROs in metallic glasses.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3