Control strategy of wind power smooth grid connection based on adaptive VMD and hybrid energy storage

Author:

Zhang Yu12ORCID,Xiao Liexi1ORCID,Zhou Hui1ORCID,Zhao Guanhao1ORCID

Affiliation:

1. College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541004, China

2. Guangxi Key Laboratory of Building New Energy and Energy Saving, Guilin 541004, China

Abstract

In nature, the variation of wind speed is characterized by randomness, fluctuation, and intermittence. In order to suppress the power fluctuation caused by wind speed changes in the process of wind turbine grid connection, a wind power smooth grid-connected control strategy based on the adaptive variational modal decomposition algorithm and the hybrid energy storage system is proposed. For the problem that the selection of variational modal decomposition parameters is subjective and experiential, which leads to the poor signal decomposition reduction degree, the sparrow search algorithm is proposed to optimize variational modal decomposition to realize the adaptive selection of key variational modal decomposition parameters k and α. First, the reference power of the hybrid energy storage system conforming to the grid-connected power fluctuation standard is obtained by the adaptive moving average algorithm. Then, adaptive variational modal decomposition of the reference power was performed to obtain a set of inherent modal functional components, and the low frequency and high frequency components of the modal components were allocated for lithium batteries and the supercapacitor, respectively. Finally, Matlab/Simulink was used to simulate and compare with the control strategy of low-pass filtering. The results show that the proposed algorithm realizes the selection of adaptive decomposition parameters of variational modal decomposition, solves the lag and frequency aliasing problems existing in power distribution of the low-pass filtering algorithm, and realizes the high reduction solution of reference power. The fluctuation of wind power connected to the grid is effectively suppressed.

Funder

Guangxi key laboratory of building new energy and energy conservation

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3