Surface plasmon-enhanced photodetection of monolayers MoS2 on an ion beam modified functional substrate

Author:

Lu Shijia1,Chen Jiamin1,Yang Fan12,Han Huangpu3,Li Xiangyang4,Chen Linlin1,Wu Yuhao1,He Bin1,Chai Guangyue1,Ruan Shuangchen1ORCID,Xiang Bingxi1ORCID

Affiliation:

1. College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China

2. School of Sciences, Xi’an Technological University, Xi’an 710021, China

3. School of Intelligent Manufacturing, Zibo Vocational Institute, Zibo 255314, China

4. Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Applied Technology, Shenzhen University, Shenzhen 518060, China

Abstract

Monolayer molybdenum disulfide (1L-MoS2) is considered a potential optoelectronic device material due to its ultrathin and direct bandgap properties. However, the absorption of incident light by 1L-MoS2 has shown to be relatively low and is not sufficient to implement high photoelectric conversion efficiency, limiting its practical applications in photodetectors. Due to the local surface plasmon resonance effect, the integration of plasma nanoparticles (NPs) with 2D materials may provide a promising method for enhancing light–matter interactions. Nevertheless, MoS2 may undergo fold deformation when transferred to the plasma structure when prepared via conventional strategies, resulting in the introduction of larger defects. In this work, we reported on a photodetector with enhanced MoS2 photoresponsivity on a flat plasmon functional substrate, in which the Ag NPs were embedded into fused silica (SiO2) by ion implantation. Using MoS2/Ag NPs:SiO2 architecture, the photocurrent of the MoS2-based photodetector was significantly improved under incident light of 375, 532, and 635 nm, with a maximum increase of 72.8 times, while the response time also decreased to a certain extent. Furthermore, the plasma functional substrate had the advantages of environmental stability and repeatable recycling, allowing it to be easily integrated with different 2D materials. Thus, this work offered a viable path for realizing efficient photodetectors based on 2D material.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Shenzhen Municipality

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3