The wetting of H2O by CO2

Author:

Brookes Samuel G. H.123ORCID,Kapil Venkat1345ORCID,Schran Christoph23ORCID,Michaelides Angelos13ORCID

Affiliation:

1. Yusuf Hamied Department of Chemistry, University of Cambridge 1 , Lensfield Road, Cambridge CB2 1EW, United Kingdom

2. Cavendish Laboratory, Department of Physics, University of Cambridge 2 , Cambridge CB3 0HE, United Kingdom

3. Lennard-Jones Centre, University of Cambridge 3 , Trinity Ln, Cambridge CB2 1TN, United Kingdom

4. Department of Physics and Astronomy, University College London 4 , 17-19 Gordon Street, London WC1H 0AH, United Kingdom

5. Thomas Young Centre and London Centre for Nanotechnology 5 , 19 Gordon Street, London WC1H 0AH, United Kingdom

Abstract

Biphasic interfaces are complex but fascinating regimes that display a number of properties distinct from those of the bulk. The CO2–H2O interface, in particular, has been the subject of a number of studies on account of its importance for the carbon life cycle as well as carbon capture and sequestration schemes. Despite this attention, there remain a number of open questions on the nature of the CO2–H2O interface, particularly concerning the interfacial tension and phase behavior of CO2 at the interface. In this paper, we seek to address these ambiguities using ab initio-quality simulations. Harnessing the benefits of machine-learned potentials and enhanced statistical sampling methods, we present an ab initio-level description of the CO2–H2O interface. Interfacial tensions are predicted from 1 to 500 bars and found to be in close agreement with experiment at pressures for which experimental data are available. Structural analyses indicate the buildup of an adsorbed, saturated CO2 film forming at a low pressure (20 bars) with properties similar to those of the bulk liquid, but preferential perpendicular alignment with respect to the interface. The CO2 monolayer buildup coincides with a reduced structuring of water molecules close to the interface. This study highlights the predictive nature of machine-learned potentials for complex macroscopic properties of biphasic interfaces, and the mechanistic insight obtained into carbon dioxide aggregation at the water interface is of high relevance for geoscience, climate research, and materials science.

Funder

Engineering and Physical Sciences Research Council

Deutsche Forschungsgemeinschaft

European Research Council

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3