Affiliation:
1. School of Physical Science and Technology, Key Laboratory of Semiconductor Photovoltaic Technology and Energy Materials at Universities of Inner Mongolia Autonomous Region, Inner Mongolia University , Hohhot 010021, China
Abstract
In recent years, organic–inorganic hybrid perovskite (PVK) devices have attracted widespread attention with their high absorption coefficient and low-cost fabrication process. Formamidinium lead iodide (FAPbI3) perovskite solar cells (PSCs) have been reported to obtain high power conversion efficiencies (PCEs) due to the narrow bandgap. Zinc oxide (ZnO) has better electrical conductivity and high transmittance than tin (IV) dioxide (SnO2). However, the deprotonation behavior of ZnO limits its use in formamidinium (FA) or methylammonium (MA) devices, so it is mostly used in all-inorganic PSCs. In this work, to avoid the deprotonation behavior of ZnO, we prepared FAPbI3 PSCs using ZnO/SnO2 as bilayer electron transporting layers (ETLs), which improved the conductivity of the ETLs and promoted electron extraction and transfer. In addition, the decrease in the oxygen vacancy (Ov) on the bilayer ETLs contributed to the suppression of the non-radiative recombination of the device, thus enabling the achievement of a higher fill factor. As a result, the modified ETLs increased the PCE of FAPbI3 PSCs from 20.24% to 21.42% and improved the stability of the devices. The PCE of unpackaged devices increased steadily to 21.91% when stored in an N2 atmosphere for 183 days.
Funder
National Natural Science Foundation of China
Education Department of Inner Mongolia Autonomous Region
Inner Mongolia University
Government of Inner Mongolia Autonomous Region
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献