On the mechanism of “tulip flame” formation: The effect of ignition sources

Author:

Qian ChengengORCID,Liberman Mikhail A.1ORCID

Affiliation:

1. Nordita, KTH Royal Institute of Technology and Stockholm University 2 , Hannes Alfvéns väg 12, 114 21 Stockholm, Sweden

Abstract

The initial stages of hydrogen–air flame propagation in tubes and the mechanism of tulip flame formation are investigated using a high-order numerical code to solve the fully compressible reactive Navier–Stokes equations for a spark or planar igniting flame at the closed end of a tube and propagating to the opposite closed or open end. It is shown that the mechanism of tulip flame formation is universal for both sparked and planar ignited flames in tubes with both ends closed. Flame front inversion results from the tulip-shaped profile of the unburned gas axial velocity near the flame front, which is the result of the superposition of the unburned gas flow generated by the accelerating flame and the reverse flow generated by the rarefaction wave during flame deceleration. In a half-open tube, this mechanism is valid for spark ignited flames. In the case of planar ignition, there is no rarefaction wave, but the growth of bulges on the sidewalls leads to the formation of a tulip flame.

Funder

no specific funds for this work

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3