Scanning ion conductance microscope with a capacitance-compensated current source amplifier

Author:

Nakazawa Kenta1ORCID,Tsukamoto Teruki1,Iwata Futoshi123ORCID

Affiliation:

1. Graduate School of Integrated Science and Technology, Shizuoka University 1 , 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan

2. Graduate School of Medical Photonics, Shizuoka University 2 , 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011, Japan

3. Research Institute of Electronics, Shizuoka University 3 , 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011, Japan

Abstract

A high-speed imaging method for a scanning ion conductance microscope (SICM) based on a current source amplifier that compensates for unavoidable capacitance is proposed. The capacitance is generated on a side wall of a nanopipette in the principle of the SICM. The electrical response time is deteriorated due to the capacitance, and the probe overshoots the setpoint of the detection of the sample surface. A capacitance compensation circuit was installed in a feedback circuit of the current source amplifier. The proposed capacitance compensation method is useful because it can shorten the imaging time by only installing the compensation circuit in the ion current detection circuit of an existing SICM. The maximum approaching speeds with and without capacitance compensation were found to be 1050 and 450 µm/s, respectively. The approaching speed with capacitance compensation was 2.3 times faster than that without capacitance compensation. A topographic image of the test sample was successfully obtained at an approaching speed of 1050 µm/s. The images of microvillus dynamics of COS-7 cells were obtained at ∼23.4 s/frame as an application of the developed technology.

Funder

Japan Society for the Promotion of Science

Nakatani Foundation for Advancement of Measuring Technologies in Biomedical Engineering

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3