Affiliation:
1. Univ. Grenoble Alpes, CEA, Leti, F-38000, Grenoble, France
2. Elettra Sincrotrone Trieste S.C.p.A, Trieste 34149, Italy
3. FBK—CMM—Micro Nano Facility 38123, Trento, Italy
Abstract
Nitrogen doping in chalcogenide materials represents a promising way for the improvement of material properties. Indeed, N doping in GeSbTe phase-change alloys have demonstrated to greatly enhance thermal stability of their amorphous phase, necessary to ensure the data retention of the final phase-change memory device. Although it is suggested that the N doping in such alloys leads to the preferential formation of Ge-N bonds, further questions concerning the bonding, in particular, Sb-N and Te-N, and the structural arrangement remain unclear. In this paper, we present a study of as-deposited elemental Ge, Sb, and Te systems and their nitrides (i.e., GeN, SbN, and TeN alloys), using a large range of N content from 0 up to about 50 at. %. The as-deposited alloys are investigated by Fourier transform infrared and Raman spectroscopy. We identify the active vibrational modes associated with the formation of Ge-N, Sb-N, and Te-N bonds, highlighting the impact of N incorporation on the structure of these elemental systems. We further qualitatively compare the GeN, SbN, and TeN experimental spectra with the “ ab initio” simulations of the related ideal nitride structures. Finally, the analysis of elemental nitride layers is extended to N-doped GeSbTe alloys, providing deeper understanding of nitrogen bonding in such ternary systems, employed in memory technology.
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献