Relating the phase in vibrational sum frequency spectroscopy and second harmonic generation with the maximum entropy method

Author:

Parshotam Shyam1ORCID,Rehl Benjamin1ORCID,Brown Alex1ORCID,Gibbs Julianne M.1ORCID

Affiliation:

1. Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada

Abstract

Nonlinear optical methods, such as vibrational sum frequency generation (vSFG) and second harmonic generation (SHG), are powerful techniques to study elusive structures at charged buried interfaces. However, for the separation and determination of the Stern and diffuse layer spectra at these charged interfaces, complex vSFG spectra and, hence, the absolute phase need to be retrieved. The maximum entropy method is a useful tool for the retrieval of complex spectra from the intensity spectra; however, one caveat is that an understanding of the error phase is required. Here, for the first time, we provide a physically motivated understanding of the error phase. Determining the error phase from simulated spectra of oscillators with a spectral overlap, we show that for broadband vSFG spectra, such as for the silica/water interface, the diffuse and Stern layers’ spectral overlap within the O–H stretching window results in a correlation between the error phase and the phase shift between the responses of these layers. This correlation makes the error phase sensitive to changes in Debye length from varying the ionic strength among other variations at the interface. Furthermore, the change in the magnitude of the error phase can be related to the absolute SHG phase, permitting the use of an error phase model that can utilize the SHG phase to predict the error phase and, hence, the complex vSFG spectra. Finally, we highlight limitations of this model for vSFG spectra with a poor overlap between the diffuse and Stern layer spectra (silica/HOD in D2O system).

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3