A machine learning photon detection algorithm for coherent x-ray ultrafast fluctuation analysis

Author:

Chitturi Sathya R.123ORCID,Burdet Nicolas G.2ORCID,Nashed Youssef2ORCID,Ratner Daniel2ORCID,Mishra Aashwin2,Lane T. J.4ORCID,Seaberg Matthew2ORCID,Esposito Vincent2ORCID,Yoon Chun Hong2ORCID,Dunne Mike2ORCID,Turner Joshua J.23ORCID

Affiliation:

1. Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA

2. SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

3. Stanford Institute for Materials and Energy Sciences, Stanford, California 94305, USA

4. Deutsches Elektronen-Synchrotron, Hamburg, Germany

Abstract

X-ray free electron laser experiments have brought unique capabilities and opened new directions in research, such as creating new states of matter or directly measuring atomic motion. One such area is the ability to use finely spaced sets of coherent x-ray pulses to be compared after scattering from a dynamic system at different times. This enables the study of fluctuations in many-body quantum systems at the level of the ultrafast pulse durations, but this method has been limited to a select number of examples and required complex and advanced analytical tools. By applying a new methodology to this problem, we have made qualitative advances in three separate areas that will likely also find application to new fields. As compared to the “droplet-type” models, which typically are used to estimate the photon distributions on pixelated detectors to obtain the coherent x-ray speckle patterns, our algorithm achieves an order of magnitude speedup on CPU hardware and two orders of magnitude improvement on GPU hardware. We also find that it retains accuracy in low-contrast conditions, which is the typical regime for many experiments in structural dynamics. Finally, it can predict photon distributions in high average-intensity applications, a regime which up until now has not been accessible. Our artificial intelligence-assisted algorithm will enable a wider adoption of x-ray coherence spectroscopies, by both automating previously challenging analyses and enabling new experiments that were not otherwise feasible without the developments described in this work.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Spectroscopy,Condensed Matter Physics,Instrumentation,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autonomous x-ray scattering;Nanotechnology;2023-05-22

2. Testing the data framework for an AI algorithm in preparation for high data rate X-ray facilities;2022 4th Annual Workshop on Extreme-scale Experiment-in-the-Loop Computing (XLOOP);2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3