Enhanced flexoelectricity with pre-strain gradients

Author:

Liu Kaiyuan1ORCID,Shao Shubao1,Ji Hui1ORCID,Wu Tonghui1,Shen Shengping1,Zhang Shuwen1,Xu Minglong1ORCID

Affiliation:

1. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Abstract

Flexoelectricity describes a strain-gradient-induced electrical polarization in dielectric materials. Compared with piezoelectricity, flexoelectricity has some advantages in size dependence, material range, and temperature range, although its electro-mechanical efficiency is low. Flexoelectric enhancement is to be achieved principally by reducing dimensions and enlarging flexoelectric coefficients. In this work, we propose a mechanical approach to enhance flexoelectricity by adjusting a pre-strain gradient with bending moments. Based on theoretical analysis, the relationship between the pre-strain gradient and enhanced polarization is deduced. Performing a four-point bending approach, experimental verification is achieved by measuring polarized charges of non-poled polyvinylidene fluoride films. The measured electric polarization has been increased by 2.8 times by adjustment of pre-strain gradients. This demonstrates the feasibility of enhancing flexoelectricity by mechanical means.

Funder

Post-doctoral Innovation Talent Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3