Machine learning in the study of phase transition of two-dimensional complex plasmas

Author:

Huang He1,Nosenko Vladimir2ORCID,Huang-Fu Han-Xiao1ORCID,Thomas Hubertus M.2ORCID,Du Cheng-Ran13ORCID

Affiliation:

1. College of Science, Donghua University, 201620 Shanghai, People's Republic of China

2. Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51147 Cologne, Germany

3. Member of Magnetic Confinement Fusion Research Centre, Ministry of Education, 201620 Shanghai, People's Republic of China

Abstract

Machine learning is applied to investigate the phase transition of two-dimensional complex plasmas. The Langevin dynamics simulation is employed to prepare particle suspensions in various thermodynamic states. Based on the resulted particle positions in two extreme conditions, bitmap images are synthesized and imported to a convolutional neural network (ConvNet) as a training sample. As a result, a phase diagram is obtained. This trained ConvNet model has been directly applied to the sequence of the recorded images using video microscopy in the experiments to study the melting.

Funder

National Natural Science Foundation of China

Key Programme

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3