A pragmatic data processing system for large resistive sensor arrays

Author:

Sun X.12ORCID,Zhang M.1ORCID

Affiliation:

1. Shenzhen International Graduate School, Tsinghua University 1 , Shenzhen 518055, China

2. China Coal Technology and Engineering Group Shanghai Company Ltd. 2 , Shanghai 200030, China

Abstract

Large resistive sensor arrays (RSAs) show great potential in tactile perception. However, the large number of sensors can result in great hardware overhead and bring difficulties for acquiring and processing mass data timely in transient measurement applications. This paper implements a field programmable gate array (FPGA)-based data processing system for a large RSA of 96 × 96, which shows good power consumption and high-speed wireless data update. For crosstalk-free measure, the zero potential method is improved with bus switches, leading to fewer operational amplifiers required and less negative power consumption. A real-time embedded data processing system is realized by FPGA for excellent parallel processing ability. A high-speed wireless transfer scheme with automatic regulated transfer size is proposed and realized by a wireless fidelity module, which allows timely data analysis at the remote end. Moreover, fault identification of RSAs fabricated by micro-electromechanical system technology is achieved. Tests carried out on a 32 × 32 RSA show that the total power consumption is 2209 mW, including 1261 mW of processors and 948 mW of readout circuits, corresponding to 2.15 mW/pixel. The total negative power consumption of 549 mW has been reduced by 50% compared with the zero potential method. The scanning speed is 400 fps, and the wireless transfer speed is up to 120 fps when the transceiver and receiver are 5 m apart.

Funder

Natural Science Foundation of Shenzhen Municipality

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3