Designed two dimensional transition metal borides (TM2B12): Robust ferromagnetic half metal and antiferromagnetic semiconductor

Author:

Yao Xiaojing1ORCID,Wang Lizhen1,Sun Yi2,Lu Jinlian3,Zhang Xiuyun2ORCID

Affiliation:

1. College of Physics and Hebei Advanced Thin Films Laboratory, Hebei Normal University 1 , Shijiazhuang 050024, China

2. College of Physics Science and Technology, Yangzhou University 2 , Yangzhou 225002, China

3. Department of Physics, Yancheng Institute of Technology 3 , Yancheng, Jiangsu 224051, China

Abstract

Two dimensional transition metal borides have been attracting broad interest due to its rich electronic and magnetic properties. Here, using first-principles calculations, we predict two transition metal boride monolayers, Cr2B12 and Mn2B12, composed of B12 icosahedra and transition metal atoms. It is found that both structures are thermodynamically stable with large cohesive energies and small formation energies. The Cr2B12 monolayer is a ferromagnetic (FM) quasi-half metal, and the Mn2B12 monolayer is an antiferromagnetic (AFM) semiconductor with a bandgap of 0.41 eV. The critical temperature is found to be 145 and 135 K for the Cr2B12 monolayer and the Mn2B12 monolayer, respectively. Moreover, the electronic and magnetic properties of both systems can be tuned by applying external strains. Upon applying biaxial tensile/compressive strain, the (half metallic) bandgap of both systems increases/decreases, and a quasi-half metal to half metal transition is found for the Cr2B12 monolayer under 5% tensile and 4% compressive strain. Furthermore, the critical temperatures of both systems are found to increase with compressive strain and decrease with tensile strain, which reaches 165 and 510 K for the Cr2B12 monolayer and the Mn2B12 monolayer under 5% compressive strain, respectively. The results provide a strategy for designing 2D transition metal borides with potential applications in electronic and spintronic devices.

Funder

National Natural Science Foundation of China

Six Talent Peaks Project in Jiangsu Province

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3