Time-dependent invasion laws for a liquid–liquid displacement system

Author:

Xiao Ke,Wu Chen-XuORCID

Abstract

Capillary-driven flow of fluids occurs frequently in nature and has a wide range of technological applications in the fields of industry, agriculture, medicine, biotechnology, and microfluidics. By using the Onsager variational principle, we propose a model to systematically study the capillary imbibition into a tube and find different laws of time-dependent capillary invasion length for liquid–liquid displacement system other than Lucas–Washburn type under different circumstances. The good agreement between our model and experimental results shows that the imbibition dynamics in a capillary tube with a prefilled liquid slug can be well captured by the dynamic equation derived in this paper. Our results bear important implications for macroscopic descriptions of multiphase flows in microfluidic systems and porous media.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Reference57 articles.

1. Physics and thermodynamics of capillary action in porous media;Ind. Eng. Chem.,1970

2. Rate of capillary rise in soil;J. Geotech. Geoenviron. Eng.,2004

3. Characterization of porous materials by capillary rise method;Physicochem. Probl. Miner. Process,2005

4. Capillary rise of water in hydrophilic nanopores;Phys. Rev. E,2009

5. Wettability measurements on plasma treated synthetic fabrics by capillary rise method;Polym. Test.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3