Materials challenges for SrRuO3: From conventional to quantum electronics

Author:

Cuoco M.1,Di Bernardo A.2ORCID

Affiliation:

1. CNR-SPIN, c/o University of Salerno, I-84084 Fisciano, Salerno, Italy

2. University of Konstanz, Department of Physics, 78457 Konstanz, Germany

Abstract

The need for faster and more miniaturized electronics is challenging scientists to develop novel forms of electronics based on quantum degrees of freedom different from electron charge. In this fast-developing field, often referred to as quantum electronics, the metal-oxide perovskite SrRuO3 can play an important role thanks to its diverse physical properties, which have been intensively investigated, mostly for conventional electronics. In addition to being chemically stable, easy to fabricate with high quality and to grow epitaxially onto many oxides—these are all desirable properties also for conventional electronics—SrRuO3 has interesting properties for quantum electronics like itinerant ferromagnetism and metallic behavior, strong correlation between magnetic anisotropy and spin–orbit coupling, strain-tunable magnetization, and anomalous Hall and Berry effects. In this Perspective, after describing the main phenomena emerging from the interplay between spin, orbital, lattice, and topological quantum degrees of freedom in SrRuO3, we discuss the challenges still open to achieve control over these phenomena. We then provide our perspectives on the most promising applications of SrRuO3 for devices for conventional and quantum electronics. We suggest new device configurations and discuss the materials challenges for their realization. For conventional electronics, we single out applications where SrRuO3 devices can bring competitive advantages over existing ones. For quantum electronics, we propose devices that can help gain a deeper understanding of quantum effects in SrRuO3 to exploit them for quantum technologies. We finally give an outlook about properties of SrRuO3 still waiting for discovery and applications that may stem from them.

Funder

Alexander von Humboldt Foundation

University of Konstanz

MIUR-PRIN

EU Horizon 2020

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3