Oxide glasses under pressure: Recent insights from experiments and simulations

Author:

Du Tao1ORCID,Sørensen Søren S.1ORCID,To Theany1ORCID,Smedskjaer Morten M.1ORCID

Affiliation:

1. Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark

Abstract

Deciphering the structure–property relations of densified oxide glasses is a problem of longstanding interest. For example, it is important for understanding the fracture mechanism under sharp contact loading as well as fabricating glasses with tunable physical characteristics. Recent advances in both experimental and simulation techniques have prompted research breakthroughs in understanding the response of glasses to high pressure. In this Perspective, we first briefly discuss the facilities for the high-pressure treatment of glasses, including in situ and ex situ investigations. The recent work on pressure-induced structural changes of archetypical oxide glass families (silicates, germanates, borates, aluminates, phosphates) is discussed and compared to the changes in macroscopic properties induced by densification, as densification treatment can be used to produce oxide glasses with improved hardness, stiffness, and toughness. We also discuss the new insights from atomistic simulations combined with topological analysis tools to unravel the densification mechanism of oxide glasses on the medium-range order length scale. Drawing on these recent studies, we clarify how densification treatment has proved to be an important tool to both understand the disordered nature of glasses and tune their physical properties, although many open questions and challenges remain that require further investigations.

Funder

Teknologi og Produktion, Det Frie Forskningsråd

H2020 Marie Skłodowska-Curie Actions

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3