Prediction of drag components on rough surfaces using effective models

Author:

Jain Sahaj1ORCID,Sudhakar Y.1ORCID

Affiliation:

1. School of Mechanical Sciences, Indian Institute of Technology Goa, Farmagudi, Goa 403 401, India

Abstract

Owing to the multiscale nature and the consequent high-computational cost associated with simulations of flows over rough surfaces, effective models are being developed as a practical means of dealing with such flows. Existing effective models focus primarily on accurately predicting interface velocities using the slip length. Moreover, they are concerned mainly with flat interfaces and do not directly address the drag computation. In this work, we formulate the Transpiration-Resistance model in polar coordinates and address the challenge of computing drag components on rough surfaces. Like the slip length, we introduce two constitutive parameters called shear and pressure correction factors that encompass information about how the total drag is partitioned into viscous and pressure components. Computation of these non-empirical parameters does not necessitate solving additional microscale problems; they can be obtained from the same microscale problem used for the slip-length calculation. We demonstrate the effectiveness of the proposed parameters for the Couette flow over rough surfaces. Moreover, using the flow over a rough cylinder as an example, we present the accuracy of predicting interface velocity and drag components by comparing the effective model results with those obtained from geometry-resolved simulations. Numerical simulations presented in this paper prove that we can accurately capture both viscous and pressure drag over rough surfaces for flat- and circular-interface problems using the proposed constitutive parameters.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3