Deep learning approaches for modeling laser-driven proton beams via phase-stable acceleration

Author:

Liu Yao-Li1ORCID,Chen Yen-Chen2ORCID,Jao Chun-Sung3ORCID,Wong Mao-Syun4ORCID,Huang Chun-Han5ORCID,Chen Han-Wei4ORCID,Isayama Shogo6ORCID,Kuramitsu Yasuhiro78ORCID

Affiliation:

1. Institute of Space and Plasma Sciences, National Cheng Kung University 1 , Tainan City 70101, Taiwan

2. National Center for High-Performance Computing, National Applied Research Laboratories 2 , Tainan City 711010, Taiwan

3. Department of Physics, National Cheng Kung University 3 , Tainan City 70101, Taiwan

4. Department of Physics, National Central University 4 , Zhongli 32001, Taiwan

5. Weather Forecast Center, Central Weather Administration 5 , 64 Gong Yuan Road, Taipei 100006, Taiwan

6. Department of Advanced Environmental Science and Engineering, Kyushu University 6 , 6-1 Kasuga-Kohen, Kasuga, Fukuoka 816-8580, Japan

7. Graduate School of Engineering, Osaka University 7 , 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

8. Institute of Laser Engineering, Osaka University 8 , 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan

Abstract

Deep learning (DL) has recently become a powerful tool for optimizing parameters and predicting phenomena to boost laser-driven ion acceleration. We developed a neural network surrogate model using an ensemble of 355 one-dimensional particle-in-cell simulations to validate the theory of phase-stable acceleration (PSA) driven by a circularly polarized laser driver. Our DL predictions confirm the PSA theory and reveal a discrepancy in the required target density for stable ion acceleration at larger target thicknesses. We discuss the physical reasons behind this density underestimation based on our DL insights.

Funder

Ministry of Science and Technology, Taiwan

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3