Determination of best particle tracking velocimetry method for two-dimensional dusty plasmas

Author:

Zeng Yue1,Ma Zhuang1,Feng Yan1ORCID

Affiliation:

1. Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physical Science and Technology, Soochow University, Suzhou 215006, China

Abstract

A practical procedure of determining the best choice of particle tracking velocimetry (PTV) methods for the analysis of two-dimensional (2D) dusty plasmas is provided. Using the measured particle positions with errors, the algorithm of PTV introduces further systematic errors while calculating particle velocities. To better quantify the errors, computer simulations of 2D Yukawa liquids are performed so that the true particle positions and velocities are precisely known. Synthetic data are achieved by varying the time interval between frames and adding the uncertainty with the different magnitude to the particle position data. Various PTV methods are used to calculate the velocity data from the achieved synthetic data, and the obtained velocity data from these PTV methods are compared with the true velocity data using two diagnostics to determine the best PTV method for various conditions. The results of various PTV methods with the simulation data are further confirmed by the demonstration using the 2D dusty plasma experimental data. This practical procedure is also applicable to determine the best PTV method for dusty plasmas in different conditions, such as those in Tokamaks, and for other physical systems, including colloids, granular materials, and fluid mechanics.

Funder

National Energy R&D Program of China

Suzhou Science and Technology Bureau

The 1000 Youth Talents Plan

The Startup Funds From Soochow University

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3