Ti3C2Tx MXene/Ge 2D/3D van der Waals heterostructures as highly efficient and fast response near-infrared photodetectors

Author:

Xie Chao1ORCID,Wang Yi1,Wang Siliang1,Yang Wenhua1ORCID,Zeng Wei1ORCID,Huang Zhixiang1,Yan Feng2ORCID

Affiliation:

1. Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronics and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China

2. Department of Applied Physics, Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China

Abstract

Cost-effective and highly efficient near-infrared photodetectors are urgently demanded in many electronic and optoelectronic products for applications in both military and civil areas. Herein, by using a simple solution-based drop-casting technique, we fabricate a Ti3C2Tx MXene/Ge two-dimensional/three-dimensional van der Waals heterostructure, which can function well as a highly efficient near-infrared photodetector. When shined by 1550 nm light illumination, the heterostructure exhibits an apparent photovoltaic effect and can, thus, work as a self-driven near-infrared photodetector. A representative photodetector achieves a photocurrent responsivity of ∼314.3 mA W−1 at zero bias voltage, which can be improved to as high as ∼642.6 mA W−1 by applying a small reverse bias voltage of −1 V. In addition, other critical performance parameters such as current on/off ratio, specific detectivity, and response speed are estimated to be ∼430, ∼2.01 × 1011 Jones, and 17.6/13.6  μs, respectively. The excellent device performance is comparable to that of many previously reported two-dimensional material/Ge heterostructure-based near-infrared photodetectors, which cannot be constructed using facile solution-based processes. This work provides a facile avenue for developing high-performance and low-cost near-infrared photodetectors, which will find important applications in future optoelectronic systems.

Funder

National Natural Science Foundation of China

Anhui Provincial Natural Science Foundation

Fundamental Research Funds for the Central Universities

Hong Kong Polytechnic University

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3