Affiliation:
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
2. State Key Laboratory of Aerodynamics, Mianyang 621000, China
Abstract
In the present study, we investigate influences of shock intensity on wall pressure fluctuations by performing direct numerical simulations of supersonic turbulence boundary layers over compression ramps with different turning angles. We found that as the turning angle increases, low-frequency motions of the separation shock are enhanced, accompanied by enlarged energetic pressure structures with lower convection velocities. By inspecting wavenumber-frequency spectra under the assumption of streamwise homogeneity, we further identified two energetic modes convected at different velocities. The one with the lower convection velocity, namely, the “slow mode,” inherited from the upstream pressure fluctuations of the turbulent boundary layer, is decelerated when passing through the oblique shock, during which the “rapid mode” with pressure fluctuations convected at higher speeds are generated. The increasing turning angle decelerates the slow mode and intensifies the fast mode. The reconstruction of the flow field suggests that the rapid mode is associated with the shear layer generated adjacent to the interaction zone, while the slow mode is associated with the Görtler vortices on the ramp.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
National Numerical Wind Tunnel Project of China
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献