Construction and characterization of conductive collagen/multiwalled carbon nanotube composite films for nerve tissue engineering

Author:

Li Qian12,Yue Chengfei3,Chen Tao12,Ding Changkun3,Zhang Hongtian4

Affiliation:

1. Institute of Advanced Photonics Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China

2. Key Laboratory of Trans-scale Laser Manufacturing Technology (Beijing University of Technology), Ministry of Education, Beijing, China

3. School of Materials Science and Engineering, Tiangong University, Tianjin, China

4. Department of Neurosurgery, the 7th Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing, China

Abstract

Currently, a growing number of biomaterials have been evaluated to be beneficial to the application of neural tissue engineering. However, their deficient mechanical and electrical properties limit their further application, especially for nerve regeneration. Therefore, the combination of biological matrix and conductive materials has been applied to meet the requirements for nerve tissue engineering. In this work, conductive collagen (COL)/multiwalled carbon nanotube (MWNT) composite films with different MWNT concentrations were developed by the solvent–evaporation method. The effects of rigid MWNT on the structure, mechanical, thermal, and electrical properties of the flexible COL-based film were evaluated. The evaluation of mechanical properties revealed that the tensile strength of the COL/MWNT composite films was almost eight times as high as that of the pure COL film. The electrical property assessment demonstrated that the electrical conductivity of COL/MWNT-0.25% reached 0.45 S/cm, meeting the electrical stimulation conditions required for nerve growth. Furthermore, the cell viability assays revealed that the COL/MWNT composite films were non-cytotoxic and appropriate for cell growth. Our work proved that the conductive COL/MWNT composite films exhibited great potential for nerve tissue engineering application, which provided a novel self-electrical stimulated platform for the treatment of neural injuries.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3