Photodissociation dynamics of the ethyl radical via the Ã2A′(3s) state: H-atom product channels and ethylene product vibrational state distribution

Author:

Sun Ge1ORCID,Zheng Xianfeng1ORCID,Song Yu1,Zhou Weidong1ORCID,Zhang Jingsong1ORCID

Affiliation:

1. Department of Chemistry, University of California at Riverside , Riverside, California 92521, USA

Abstract

The photodissociation dynamics of jet-cooled ethyl radical (C2H5) via the Ã2A′(3s) states are studied in the wavelength region of 230–260 nm using the high-n Rydberg H-atom time-of-flight (TOF) technique. The H + C2H4 product channels are reexamined using the H-atom TOF spectra and photofragment translational spectroscopy. A prompt H + C2H4(X̃1Ag) product channel is characterized by a repulsive translational energy release, anisotropic product angular distribution, and partially resolved vibrational state distribution of the C2H4(X̃1Ag) product. This fast dissociation is initiated from the 3s Rydberg state and proceeds via a H-bridged configuration directly to the H + C2H4(X̃1Ag) products. A statistical-like H + C2H4(X̃1Ag) product channel via unimolecular dissociation of the hot electronic ground-state ethyl (X̃2A′) after internal conversion from the 3s Rydberg state is also examined, showing a modest translational energy release and isotropic angular distribution. An adiabatic H + excited triplet C2H4(ã3B1u) product channel (a minor channel) is identified by energy-dependent product angular distribution, showing a small translational energy release, anisotropic angular distribution, and significant internal excitation in the C2H4(ã3B1u) product. The dissociation times of the different product channels are evaluated using energy-dependent product angular distribution and pump–probe delay measurements. The prompt H + C2H4(X̃1Ag) product channel has a dissociation time scale of <10 ps, and the upper bound of the dissociation time scale of the statistical-like H + C2H4(X̃1Ag) product channel is <5 ns.

Funder

National Science Foundation

UC MEXUS-CONACYT

The University Annual Scientific Research Plan of Anhui Province

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3