New theoretical insights on the nonradiative relaxation mechanism of the core structure of mycosporines: The amino-cyclohexenone central template

Author:

Roshan Simin1ORCID,Hymas Michael23ORCID,Stavros Vasilios G.2ORCID,Omidyan Reza1ORCID

Affiliation:

1. Department of Chemistry, University of Isfahan 1 , 81746-73441 Isfahan, Iran

2. School of Chemistry, University of Birmingham 2 , Edgbaston B15 2TT, United Kingdom

3. Department of Chemistry, University of Warwick 3 , Coventry CV4 7AL, United Kingdom

Abstract

We present a comprehensive computational study describing the excited state dynamics and consequent photostability of amino-cyclohexenone (ACyO), the central template of mycosporine systems, widely recognized for their photoprotection of aquatic species. Photoexcitation to the first excited electronic state (S1, 1nπ*) of ACyO is considered an optically dark transition, while photoexcitation to the second excited electronic state (S21ππ*) is an optically bright 1ππ* transition and largely responsible for UV absorption properties of this molecule. We show that following initial photoexcitation to S2, ACyO relaxes via two competing deactivation mechanisms, each mediated by an S1/S0 conical intersection, which directs the excited state population to the electronic ground state (S0). Our ab initio computational results are supported with nonadiabatic dynamics simulation results, yielding an excited state lifetime of ∼280 fs for this system in vacuo. These results explain the inherent photostability of this core structure, commonplace in a wide range of microorganisms.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3