All-solid-state Li battery with atomically intimate electrode–electrolyte contact

Author:

Gu Zhenqi12,Wang Kai12,Zhu Feng12,Ma Cheng123ORCID

Affiliation:

1. Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China

2. CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China

3. National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China

Abstract

Creating epitaxial interfaces has recently been discovered as an effective strategy for addressing the electrode–electrolyte contact issue in all-solid-state Li batteries. The solid–solid composite electrode fabricated using this approach not only exhibits atomically intimate solid–solid contact but also possesses excellent tolerance to repeated cycling. Nevertheless, so far such epitaxial composite electrodes have only been cycled in cells with liquid-electrolyte-soaked separators, instead of all-solid-state cells, because realizing a thorough contact between the epitaxial composite electrode and the solid-electrolyte separator layer is difficult. Here, an all-solid-state cell with decent cycling performance was constructed using the epitaxial composite electrode. By infiltrating the Li4Ti5O12–Li0.33La0.56TiO3 ceramic pellet with a poly(ethylene oxide)-based solid electrolyte, a flat, non-porous surface that can effectively contact the separator layer is created. When integrated into an all-solid-state Li4Ti5O12–Li0.33La0.56TiO3 | Li6PS5Cl | Li13Si4 cell, this composite electrode was stably cycled for 100 cycles under 0.1 C at 80 °C with a final discharge capacity of 174.5 mAh g−1.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

National Synchrotron Radiation Laboratory

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3