Multireference configuration interaction study of the predissociation of C2 via its F1Πu state

Author:

Xu Zhongxing1ORCID,Federman S. R.2ORCID,Jackson William M.1,Ng Cheuk-Yiu1,Wang Lee-Ping1ORCID,Crabtree Kyle N.1ORCID

Affiliation:

1. Department of Chemistry, University of California, Davis, Davis, California 95616, USA

2. Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, USA

Abstract

Photodissociation is one of the main destruction pathways for dicarbon (C2) in astronomical environments, such as diffuse interstellar clouds, yet the accuracy of modern astrochemical models is limited by a lack of accurate photodissociation cross sections in the vacuum ultraviolet range. C2 features a strong predissociative [Formula: see text] electronic transition near 130 nm originally measured in 1969; however, no experimental studies of this transition have been carried out since, and theoretical studies of the F1Π u state are limited. In this work, potential energy curves of excited electronic states of C2 are calculated with the aim of describing the predissociative nature of the F1Π u state and providing new ab initio photodissociation cross sections for astrochemical applications. Accurate electronic calculations of 56 singlet, triplet, and quintet states are carried out at the DW-SA-CASSCF/MRCI+Q level of theory with a CAS(8,12) active space and the aug-cc-pV5Z basis set augmented with additional diffuse functions. Photodissociation cross sections arising from the vibronic ground state to the F1Π u state are calculated by a coupled-channel model. The total integrated cross section through the F1Π u v = 0 and v = 1 bands is 1.198 × 10−13 cm2 cm−1, giving rise to a photodissociation rate of 5.02 × 10−10 s−1 under the standard interstellar radiation field, much larger than the rate in the Leiden photodissociation database. In addition, we report a new [Formula: see text] state that should be detectable via a strong [Formula: see text] band around 116 nm.

Funder

National Aeronautics and Space Administration

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3