Electromagnetic induction with time-varying magductance under constant magnetic field

Author:

Qin Wei1ORCID,Cheng Ming1ORCID,Zhu Xinkai2ORCID,Wang Zheng1ORCID,Hua Wei1ORCID

Affiliation:

1. School of Electrical Engineering, Southeast University 1 , Nanjing 210096, China

2. Department of Electric Power Engineering, North China Electric Power University 2 , 071003 Baoding, China

Abstract

Electrical energy is becoming more popular due to the fact that it is economic, practical, clean, and easy to control and convert energy compared to other forms of energy. Currently, however, most of the electrical energy is converted from or to mechanical energy based on the well-known Faraday’s law of electromagnetic induction, which states that a current will be induced in a closed conductive coil exposed to a changing magnetic field. For that purpose, either the magnetic field itself must be changing or the magnetic field must be moving relative to the closed conductive coil. While investigating the physical significance of magductance (or magnetic-inductance), we unearthed a new electromagnetic induction mechanism that the electrical current is induced in a closed conductive coil with the invariant magnetic field by changing the magnetic parameter of magductance of the closed coil. Time-varying magductance is achieved by changing the conductivity of the coil. To demonstrate the feasibility of the electromagnetic induction, both theoretical validation and experimental verification are undertaken. We built a closed superconducting coil and successfully measured the induced electrical currents in the cooling process of the closed superconducting coil under an invariant magnetic field, thus verifying the new law of electromagnetic induction.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3