Quantifying the impact of uninformative features on the performance of supervised classification and dimensionality reduction algorithms

Author:

Lei Weihua1ORCID,Zanchettin Cleber12ORCID,Ho Zoey E.3ORCID,Nunes Amaral Luís A.145ORCID

Affiliation:

1. Department of Physics and Astronomy, Northwestern University 1 , Evanston, Illinois 60208, USA

2. Centro de Informática, Universidade Federal de Pernambuco 2 , Recife, Pernambuco 52061080, Brazil

3. Department of Engineering Sciences and Applied Mathematics, Northwestern University 3 , Evanston, Illinois 60208, USA

4. Department of Chemical and Biological Engineering, Northwestern University 4 , Evanston, Illinois 60208, USA

5. Northwestern Institute on Complex Systems (NICO), Northwestern University 5 , Evanston, Illinois 60208, USA

Abstract

Machine learning approaches have become critical tools in data mining and knowledge discovery, especially when attempting to uncover relationships in high-dimensional data. However, researchers have noticed that a large fraction of features in high-dimensional datasets are commonly uninformative (too noisy or irrelevant). Because optimal feature selection is an NP-hard task, it is essential to understand how uninformative features impact the performance of machine learning algorithms. Here, we conduct systematic experiments on algorithms from a wide range of taxonomy families using synthetic datasets with different numbers of uninformative features and different numbers of patterns to be learned. Upon visual inspection, we classify these algorithms into four groups with varying robustness against uninformative features. For the algorithms in three of the groups, we find that when the number of uninformative features exceeds the number of data instances per pattern to be learned, the algorithms fail to learn the patterns. Finally, we investigate whether increasing the distinguishability of patterns or adding training instances can mitigate the effect of uninformative features. Surprisingly, we find that uninformative features still cause algorithms to suffer big losses in performance, even when patterns should be easily distinguishable. Analyses of real-world data show that our conclusions hold beyond the synthetic datasets we study systematically.

Funder

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3