DEFM: Delay-embedding-based forecast machine for time series forecasting by spatiotemporal information transformation

Author:

Peng Hao1ORCID,Wang Wei1ORCID,Chen Pei1ORCID,Liu Rui1ORCID

Affiliation:

1. School of Mathematics, South China University of Technology 1 , Guangzhou 510640, China

Abstract

Making accurate forecasts for a complex system is a challenge in various practical applications. The major difficulty in solving such a problem concerns nonlinear spatiotemporal dynamics with time-varying characteristics. Takens’ delay embedding theory provides a way to transform high-dimensional spatial information into temporal information. In this work, by combining delay embedding theory and deep learning techniques, we propose a novel framework, delay-embedding-based forecast Machine (DEFM), to predict the future values of a target variable in a self-supervised and multistep-ahead manner based on high-dimensional observations. With a three-module spatiotemporal architecture, the DEFM leverages deep neural networks to effectively extract both the spatially and temporally associated information from the observed time series even with time-varying parameters or additive noise. The DEFM can accurately predict future information by transforming spatiotemporal information to the delay embeddings of a target variable. The efficacy and precision of the DEFM are substantiated through applications in three spatiotemporally chaotic systems: a 90-dimensional (90D) coupled Lorenz system, the Lorenz 96 system, and the Kuramoto–Sivashinsky equation with inhomogeneity. Additionally, the performance of the DEFM is evaluated on six real-world datasets spanning various fields. Comparative experiments with five prediction methods illustrate the superiority and robustness of the DEFM and show the great potential of the DEFM in temporal information mining and forecasting.

Funder

National Natural Science Foundation of China

Guangdong Provincial Key Laboratory of Human Digital Twin

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3