Influence of reaction cell electrodes on organic electrochemical transistors

Author:

Li HuiyuanORCID,Jin ZichenORCID,Jiang XiaoningORCID,An Meiwen,Ji JianlongORCID,Huang DiORCID

Abstract

Organic electrochemical transistors (OECTs) hold great potential in various applications, including biosensing and neural network computation. Traditional “all-in-one” OECT device architecture faces the problems of unclear amplification mechanisms and complex side reactions, to name a few. The reaction cell OECT (RC-OECT) device architecture, proposed by Ting et al. [Adv. Funct. Mater. 31(19), 2010868 (2021)], effectively resolves these problems. Furthermore, in many applications of OECTs, such as high throughput (bio)sensing, an OECT device array instead of a single OECT is needed. Therefore, the size (area) of the OECT device, which represents the amount of occupied chip real estate and the integration of the device, matters. In this paper, we developed a hydrogen peroxide sensor based on the RC-OECT. We utilized an RC cathode modified by the poly(3,4-ethylenedioxythiophene) polystyrene sulfonate film and a Ag/AgCl OECT gate electrode for facilitating device integration, varied RC anode area, and achieved optimization of at least one of the two parameters, sensitivity and lower limit of detection (LLoD), in conjunction with the level of integration of the device. Multiple quantitative sensitivity metrics have been adopted in this work. We also evaluated the correlation between RC anode area and LLoD. In addition, a mechanistic analysis of the RC-OECT device structure, in terms of faradic and non-faradaic currents, was carried out to illustrate the interplay between sensing performance and the electrode area of the reaction cell. This mechanistic analysis provides insights for miniaturizing OECT devices with the RC-OECT architecture.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

China Postdoctoral Science Foundation

Patent Transformation Special Program of Shanxi Province

Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3