Effects of side-wall air cooling on solar thermoelectric generation with high aspect-ratio, V-shaped P/N couples

Author:

Li Xinjie1ORCID,Mohankumar Thiraj2ORCID,Bahk Je-Hyeong12ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Cincinnati 1 , Cincinnati, Ohio 45221, USA

2. Department of Mechanical and Materials Engineering, University of Cincinnati 2 , Cincinnati, Ohio 45221, USA

Abstract

Solar thermoelectric generators (STEGs) often require long thermoelectric (TE) legs and efficient cooling at the cold side to increase the temperature difference across TE legs and, thus, the power output. We investigate the effects of direct side-wall air cooling of TE legs on the power output of STEGs fabricated with high aspect-ratio as well as V-shaped p-type and n-type TE couples without additional heat sinks. Wire-type metallic TE materials are welded together to create V-shape TE leg arrays without additional electrodes and attached to a ceramic plate with a solar absorber on top to complete the STEG. The power generation performance of the STEG is investigated with varying wind speed under concentrated solar irradiation. Finite element simulation is performed to further analyze the heat transfer and thermoelectric performance. We find that although sidewall air cooling helps to keep the cold-side temperature cooler in both natural and forced convection regimes, it can also lower the hot-side temperature to reduce the net temperature difference and, thus, the power output and efficiency. Partial thermal insulation of TE couples can further enhance the power output under forced air convection by keeping the hot side temperature higher. The developed STEG achieves a maximum power density of 230 μW/cm2 and a system efficiency of 0.023% under 10 suns with natural convection. The low efficiency was mainly due to the low ZT of the metallic TE materials used and the unoptimized leg length. Our simulation shows that the system efficiency can be improved to 2.8% with state-of-the-art Bi2Te3 alloys at an optimal leg length.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3