Dirac operators with torsion, spectral Einstein functionals and the noncommutative residue

Author:

Wang Jian1ORCID,Wang Yong2ORCID,Wu Tong2

Affiliation:

1. School of Science, Tianjin University of Technology and Education 1 , Tianjin 300222, People’s Republic of China

2. School of Mathematics and Statistics, Northeast Normal University 2 , Changchun 130024, People’s Republic of China

Abstract

Recently Dabrowski et al. [Adv. Math. 427, 109128 (2023)] obtained the metric and Einstein functionals by two vector fields and Laplace-type operators over vector bundles, giving an interesting example of the spinor connection and square of the Dirac operator. Pfäffle and Stephan [Commun. Math. Phys. 321, 283–310 (2013)] considered orthogonal connections with arbitrary torsion on compact Riemannian manifolds and computed the spectral action. Motivated by the spectral functionals and Dirac operators with torsion, we give some new spectral functionals which is the extension of spectral functionals to the noncommutative realm with torsion, and we relate them to the noncommutative residue for manifolds with boundary. Our method of producing these spectral functionals is the noncommutative residue and Dirac operators with torsion.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of China:

Publisher

AIP Publishing

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3