Effect of external magnetic field on the preparation of nitrogen-doped diamond-like carbon films

Author:

Du Wenhan12ORCID,Chen Wangze1ORCID,Gu Yanxiang1,Yang Jingjing2,Hu Susu2,Du Xiaojiao2,Zhang Keke3ORCID

Affiliation:

1. Changzhou University, School of Petrochemical Engineering 1 , Changzhou 213364, China

2. Changzhou Institute of Technology, School of Photoelectric Engineering 2 , Changzhou 213032, China

3. Nanyang Technological University, School of Materials Science and Engineering 3 , Singapore 639798, Singapore

Abstract

Nitrogen-doped diamond-like carbon (DLC) films were prepared on quartz substrates and silicon wafers using the radio-frequency magnetron sputtering technique with high-purity graphite as the target material. Simultaneously, a permanent NdFeB magnet was placed on the substrate site to study the effect of an additional external magnetic field on the film growth. X-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), UV–Vis spectroscopy, and scanning electron microscopy (SEM) were used to characterize the microstructure and surface morphology of the nitrogen-doped DLC films with and without additional magnetic field. The obtained results indicate that the deposited DLC films were amorphous for both conditions. The C1s and N1s core energy levels of the XPS spectrum confirmed the formation of N=C, N≡C, and N–C bonds in the films. With an increasing nitrogen flow rate, the nitrogen content of the DLC films prepared without an additional magnetic field increased. When the nitrogen flow rate was 9 sccm, the maximum nitrogen content in the film prepared without an additional magnetic field was 24.33%. However, the maximum nitrogen content in the film prepared with an additional magnetic field increased to 32.55%, at the nitrogen flow rate of 3 sccm, and the sp3/sp2 ratio reached 1.39. The SEM results showed that the surface of the nitrogen-doped DLC film was smooth, flat, and compact after the application of the additional magnetic field, and the film was closely bonded with the substrate.

Funder

National Natural Science Foundation of China

The Science and Technology Program of Changzhou

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3