Few-mode metal-free perovskite optical fiber with second-order optical nonlinearity

Author:

Tsui Hei Chit Leo1ORCID,Sirbu Dumitru1ORCID,Alsaif Naseem1,Hill Nathan1ORCID,Tizzard Graham2ORCID,Docampo Pablo3ORCID,Healy Noel1ORCID

Affiliation:

1. Emerging Technologies and Materials Group, School of Mathematics, Statistics and Physics, Newcastle University 1 , Newcastle NE1 7RU, United Kingdom

2. School of Chemistry, University of Southampton 2 , Southampton SO17 1BJ, United Kingdom

3. School of Chemistry, University of Glasgow 3 , Glasgow G12 8QQ, United Kingdom

Abstract

Semiconductor core optical fibers are highly desirable for fiber-based photonic and optoelectronic applications as they can combine strong optical nonlinearities, tight light confinement, wide transmission bands, and electronic functionality within a single platform. Perovskites have emerged as particularly exciting materials for semiconductor photonics as they have strong optical nonlinearities and tunable optoelectronic bandgaps. However, lead-based perovskites contain toxic elements and are, therefore, not environmentally friendly. Furthermore, in fiber form, their core-size is prohibitively large, making them unsuitable for nonlinear optics and applications that require single-mode guidance, such as telecommunications. Here, we report a metal-free perovskite core optical fiber where lead has been substituted for an ammonium cation in the perovskite structure. The core material has a wide bandgap greater than 5 eV, a high laser damage threshold, and a core diameter that can be produced as small as 5 µm. At this core size, the fiber supports just six modes, and the fundamental mode can readily be excited and isolated. Moreover, the metal-free perovskite has a second-order susceptibility that is absent in the archetypal lead-based perovskites and many other semiconductor core materials, such as silicon and germanium. The second-order susceptibility is important for many nonlinear optics applications, such as second-harmonic generation and quantum optics.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3