Affiliation:
1. Theoretische Chemie, Universität Bielefeld 1 , Postfach 100131, D-33501 Bielefeld, Germany
2. Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251 2 , F-35000 Rennes, France
Abstract
The scattering of H by I is a prototypical model system for light-heavy scattering in which relativistic coupling effects must be taken into account. Scattering calculations depend strongly on the accuracy of the potential energy surface (PES) model. The methodology to obtain such an accurate PES model suitable for scattering calculations is presented, which includes spin–orbit (SO) coupling within the Effective Relativistic Coupling by Asymptotic Representation (ERCAR) approach. In this approach, the SO coupling is determined only for the atomic states of the heavy atom, and the geometry dependence of the SO effect is accounted for by a diabatization with respect to asymptotic states. The accuracy of the full model, composed of a Coulomb part and the SO model, is achieved in the following ways. For the SO model, the extended ERCAR approach is applied, which accounts for both intra-state and inter-state SO coupling, and an extended number of diabatic states are included. The corresponding coupling constants for the SO operator are obtained from experiments, which are more accurate than computed values. In the Coulomb Hamiltonian model, special attention is paid to the long range behavior and accurate c6 dispersion coefficients. The flexibility and accuracy of this Coulomb model are achieved by combining partial models for three different regions. These are merged via artificial neural networks, which also refine the model further. In this way, an extremely accurate PES model for hydrogen iodide is obtained, suitable for accurate scattering calculations.
Funder
Université de Rennes 1
Centre National de la Recherche Scientifique
Deutsche Forschungsgemeinschaft
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献