Controllable flatbands via non-Hermiticity

Author:

Lin Shirong123ORCID,Liang Yao1ORCID,Zhang Jingcheng1,Chen Mu Ku145,Tsai Din Ping145ORCID

Affiliation:

1. Department of Electrical Engineering, City University of Hong Kong 1 , Kowloon, Hong Kong 999077, China

2. School of Physical Sciences, Great Bay University 2 , Dongguan 523000, China

3. Great Bay Institute for Advanced Study 3 , Dongguan 523000, China

4. State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong 4 , Kowloon, Hong Kong 999077, China

5. Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong 5 , Kowloon, Hong Kong 999077, China

Abstract

We propose a flexible way to design and control flatbands in photonic systems with balanced gain and loss. We investigate a lattice model constructed from two parity-time (PT)-symmetric dimer systems, which give rise to two flatbands. By tuning the non-Hermiticity in this composite lattice, the flatbands can be manipulated into the regime of the dispersive bands and remain completely flat, which is protected by the PT symmetry. When reaching the exceptional point (EP), where two flatbands merge into one flatband, and surpassing the EP, one of the flatbands transforms into a partial flatband, while the imaginary parts of the band structure also appear in the form of multiple flatbands. We also discover that dimensionality plays an important role in controlling flatbands in a non-Hermitian manner. Our results could be potentially important for manipulating the dynamics and localization of light in non-Hermitian open systems.

Funder

Research Grants Council, University Grants Committee

Guangdong Provincial Department of Science and Technology

City University of Hong Kong

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3