Thermal control of polarization of light with nonlocal plasmonic anisotropic metamaterials

Author:

Wu Jingyi1ORCID,Bykov Anton Yu.1ORCID,Krasavin Alexey V.1ORCID,Nasir Mazhar E.1ORCID,Zayats Anatoly V.1ORCID

Affiliation:

1. Department of Physics and London Centre for Nanotechnology, King's College London , Strand, London WC2R 2LS, United Kingdom

Abstract

Plasmonic nanostructures have demonstrated significant potential for engineering the intensity and polarization state of light with further opportunities to actively manipulate them by external stimulation using nonlinear effects. Plasmonic metamaterials composed of arrays of vertically oriented metallic nanorods have shown a dynamically tunable optical response based on the change of the electron temperature. The modulation of the optical properties is particularly pronounced in the epsilon-near-zero regime and can be further enhanced by nonlocal effects. Here, we experimentally study the optical properties of gold nanorod metamaterials with a strong nonlocal response under optically-induced heating, exploiting temperature dependence of the metal permittivity. Recovering the Stokes parameters of light transmitted through the metamaterial, we demonstrate the change in the polarization of the transmitted light by more than 20% for temperature changes under hundred degrees. Combined with a numerical analysis, this shows the possibility of controlling transmission and polarization state of light by using metamaterial-assisted thermal modulation.

Funder

European Research Council

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanomaterials for Ultrafast and Chiral Plasmonics;2024 IEEE Research and Applications of Photonics in Defense Conference (RAPID);2024-08-14

2. Electric tuning of plasmonic resonances in ultrathin gold nanoribbon arrays;Photonics Research;2024-08-01

3. Nanophotonics with Plasmonic Nanorod Metamaterials;Laser & Photonics Reviews;2024-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3