Prediction and mitigation of nonlocal cascading failures using graph neural networks

Author:

Jhun Bukyoung1ORCID,Choi Hoyun1ORCID,Lee Yongsun12ORCID,Lee Jongshin12ORCID,Kim Cook Hyun12,Kahng B.2ORCID

Affiliation:

1. CCSS and CTP, Seoul National University 1 , Seoul 08826, South Korea

2. Center for Complex Systems and KI for Grid Modernization, Korea Institute of Energy Technology 2 , Naju, Jeonnam 58217, South Korea

Abstract

Cascading failures in electrical power grids, comprising nodes and links, propagate nonlocally. After a local disturbance, successive resultant can be distant from the source. Since avalanche failures can propagate unexpectedly, care must be taken when formulating a mitigation strategy. Herein, we propose a strategy for mitigating such cascading failures. First, to characterize the impact of each node on the avalanche dynamics, we propose a novel measure, that of Avalanche Centrality (AC). Then, based on the ACs, nodes potentially needing reinforcement are identified and selected for mitigation. Compared with heuristic measures, AC has proven to be efficient at reducing avalanche size; however, due to nonlocal propagation, calculating ACs can be computationally burdensome. To resolve this problem, we use a graph neural network (GNN). We begin by training a GNN using a large number of small networks; then, once trained, the GNN can predict ACs efficiently in large networks and real-world topological power grids in manageable computational time. Thus, under our strategy, mitigation in large networks is achieved by reinforcing nodes with large ACs. The framework developed in this study can be implemented in other complex processes that require longer computational time to simulate large networks.

Funder

National Research Foundation of Korea

KENTECH

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting Braess's paradox of power grids using graph neural networks;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-01-01

2. Emergence of dense scale-free networks and simplicial complexes by random degree-copying;Journal of Complex Networks;2023-11-07

3. Power Failure Cascade Prediction using Graph Neural Networks;2023 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm);2023-10-31

4. Toward dynamic stability assessment of power grid topologies using graph neural networks;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3