Structural and magnetic properties of molecular beam epitaxy (MnSb2Te4)x(Sb2Te3)1−x topological materials with exceedingly high Curie temperature

Author:

Forrester Candice R.123ORCID,Testelin Christophe4ORCID,Wickramasinghe Kaushini1,Levy Ido5ORCID,Demaille Dominique4,Hrabovsky David6ORCID,Ding Xiaxin7ORCID,Krusin-Elbaum Lia78,Lopez Gustavo E.23ORCID,Tamargo Maria C.128ORCID

Affiliation:

1. Department of Chemistry, The City College of New York 1 , New York, New York 10031, USA

2. Ph.D Program in Chemistry, CUNY Graduate Center 2 , New York, New York 10016, USA

3. Department of Chemistry, Lehman College 3 , Bronx, New York 10468, USA

4. Institut des NanoScience de Paris, Sorbonne Université, CNRS 4 , F-75005 Paris, France

5. Department of Physics, New York University 5 , New York, New York 10003, USA

6. Sorbonne Université 6 , MPBT Platform, 4 Place Jussieu, 75252 Paris, France

7. Department of Physics, The City College of New York 7 , New York, New York 10031, USA

8. PhD Program in Physics, CUNY Graduate Center 8 , New York, New York 10016, USA

Abstract

Tuning the properties of magnetic topological materials is of interest to realize exotic physical phenomena, new quantum phases and quasiparticles, and topological spintronic devices. However, current topological materials exhibit Curie temperature (TC) values far below those needed for practical applications. In recent years, significant progress has been made to control and optimize TC, particularly through defect-engineering of these structures. Most recently, we reported TC values up to 80 K for (MnSb2Te4)x(Sb2Te3)1−x when 0.7 ≤ x ≤ 0.85 by controlling the composition x and the Mn content in these structures during molecular beam epitaxy growth. In this study, we show further enhancement of the TC, as high as 100 K, by maintaining high Mn content and reducing the growth rate from 0.9 nm/min to 0.5 nm/min. Derivative curves of the Hall resistance and the magnetization reveal the presence of two TC components contributing to the overall value and suggest TC1 and TC2 have distinct origins: excess Mn in MnSb2Te4 septuple layers (SLs) and high Mn content in Sb2−yMnyTe3 quintuple layer (QL) alloys, respectively. To elucidate the mechanisms promoting higher TC values in this system, we show evidence of enhanced structural disorder due to the excess Mn that occupies not only Sb sites but also Te sites, leading to the formation of a new crystal structure for these materials. Learning to control defects that enhance desired magnetic properties and understanding the mechanisms that promote high TC in magnetic topological materials such as (Mn1+ySb2−yTe4)x(Sb2−yMnyTe3)1−x is of great importance to achieve practical quantum devices.

Funder

Agence Nationale de la Recherche

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3