Enhanced electron acceleration by high-intensity lasers in extended (confined) preplasma in cone targets

Author:

Rusby D. R.1ORCID,Cochran G. E.1ORCID,Aghedo A.2ORCID,Albert F.1,Armstrong C. D.3ORCID,Haid A.4ORCID,Kemp A. J.1ORCID,Kerr S. M.1ORCID,King P. M.15ORCID,Lemos N.1ORCID,Manuel M. J.-E.4ORCID,Ma T.1ORCID,MacPhee A. G.1ORCID,Pagano I.5,Pak A.1,Scott G. G.1ORCID,Siders C. W.1,Simpson R. A.16ORCID,Sinclair M.7ORCID,Wilks S. C.1,Williams G. J.1ORCID,Mackinnon A. J.1ORCID

Affiliation:

1. Lawrence Livermore National Laboratory 1 , Livermore, California 94550, USA

2. Department of Physics, Florida A & M University 2 , Tallahassee, Florida 32307, USA

3. Central Laser Facility, Rutherford Appleton Laboratory 3 , Didcot OX11 0QX, United Kingdom

4. General Atomics 4 , La Jolla, California 92093, USA

5. Department of Physics, University of Texas at Austin 5 , Austin, Texas 78712, USA

6. Department of Nuclear Science and Engineering, Massachusetts Institute of Technology 6 , Cambridge, Massachusetts 02139, USA

7. Department of Physics, University of California at Los Angeles 7 , Los Angeles, California 90095, USA

Abstract

We report on experimental results from a high-intensity laser interaction with cone targets that increase the number (×3) and temperature (×3) of the measured hot electrons over a traditional planar target. This increase is caused by a substantial increase in the plasma density within the cone target geometry, which was induced by 17 ± 9 mJ prepulse that arrived 1.5 ns prior to the main high intensity (>1019 W/cm2). Three-dimensional hydrodynamic simulations are conducted using hydra which show that the cone targets create substantially longer and denser plasma than planar targets due to the geometric confinement of the expanding plasma. The density within the cone is a several hundred-micron plasma “shelf” with a density of approximately 1020 ne/cc. The hydra simulated plasma densities are used as the initial conditions for two-dimensional particle-in-cell simulations using EPOCH. These simulations show that the main acceleration mechanism is direct-laser-acceleration, with close agreement between experimentally measured and simulated electron temperatures. Further analysis is conducted to investigate the acceleration of the electrons within the long plasma generated within a compound parabolic concentrator by the prepulse.

Funder

Fusion Energy Sciences

Lawrence Livermore National Laboratory

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Laser-Driven MeV X-ray Radiography using the NIF-ARC laser system;Optica Imaging Congress (3D, COSI, DH, FLatOptics, IS, pcAOP);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3