Nonlinear characteristics and corrections of near-field underwater explosion shock waves

Author:

Jia Xiyu1ORCID,Wang Shushan1ORCID,Xu Jie1,Zhang Jingxiao2,Gao Yuan1,Ma Feng1ORCID

Affiliation:

1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China

2. Ordnance Science and Research Academy of China, Beijing 100089, People's Republic of China

Abstract

The shock wave characteristics within the near-field are one of the most challenging aspects of understanding an underwater explosion. The latest numerical and experimental techniques were utilized to investigate the near-field pressure distribution and decay features after a shock disturbance. The governing equations in the numerical simulation were discretized with a fifth-order weighted essentially non-oscillatory scheme in space and a third-order Runge–Kutta scheme in time, and multi-medium interactions were defined and resolved via the modified ghost fluid method. The test system consisted of a synchronized high-speed framing camera and polyvinylidene fluoride (PVDF) sensors. Three identical spherical composition B charges were examined under the same test conditions, and the raw data from the high-speed camera were processed with edge detection and circle fitting techniques. The comparison showed that the high-speed camera image data, the PVDF signals, and the numerical computation results were highly consistent with each other. Higher-order correction terms were added to the pressure peak distribution model and the pressure decay model as nonlinear corrections based on further comprehensive and insightful analysis of the verified results. The corrected models not only fit with the near-field data but had better accuracy under the far-field condition as well.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference48 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3