Effectively detecting cardiac myoglobin by use of bound states in the continuum in silicon nitride gratings

Author:

Beliaev Leonid Yu.1ORCID,Takayama Osamu1ORCID,Xiao Sanshui12ORCID

Affiliation:

1. DTU Electro—Department of Electrical and Photonics Engineering, Technical University of Denmark 1 , Ørsteds Plads, Building 343, DK-2800 Kongens Lyngby, Denmark

2. NanoPhoton—Center for Nanophotonics, Technical University of Denmark 2 , Building 345A, DK-2800 Kongens Lyngby, Denmark

Abstract

Optical biosensors with their sensitivity, compact design, and reliability stand out as versatile tools capable of detecting a wide range of analytes. Recently, nanophotonic structures supporting bound states in the continuum (BIC) modes have been actively studied, which is especially interesting for biosensing applications due to their high quality (Q) factor and strongly localized electric field, achieving favorable interaction between field and nanometer scale analyte on the sensing surface. Herein, we demonstrate an optical label-free sensing by accidental or Friedrich–Wintgen (FW) BIC supported on silicon nitride gratings. We compared the sensing performance in terms of bulk, and surface sensitivity, and figure of merit with FW-BIC in the leaky regime and with a symmetry-protected (SP) BIC, which are also supported by the studied platform. We exploit the fact that for FW-BIC a high-Q factor up to 498 comparable to that of SP-BIC (up to 425) retains for a much larger set of interrogation angles, providing excellent interrogation stability. We observed that FW-BIC has slightly higher bulk sensitivity than SP-BIC [186 and 158 nm/RIU (refractive index unit), respectively], but at the same time similar characteristics in terms of surface sensitivity and figure of merit. In addition, we show that both BIC resonances are significantly superior in all respects to the leaky regime due to better field confinement. Finally, the surface of sensing device was also functionalized to detect a cardiac biomarker, myoglobin, exhibiting the limit of detection of 49 ng/ml with clinically relevant level.

Funder

Novo Nordisk Fonden

Danmarks Grundforskningsfond

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3